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ABSTRACT — In this work, we present a numerical |,

method to obtain an unconditionally stable solution for the
finite element method in time domain (FETD) for two-
dimensional TE, case. Our method does not utilize the
customary marching-on in time solution method often used
to solve a hyperbolic partial differential equation. Instead
we solve the time domain wave equation by expressing the
transient behaviors in terms of weighted Lagunerre
polynomials. By using these cansal orthonormal basis
functions for the temporal variation, the time derivatives
can be handled analytically. To verify our method, we apply
it to two-dimensional parallel plate waveguide and compare
the result to that of the conventional FETD using the
Newmark-Beta method.

I. INTRODUCTION

In recent times, the finite element method in time
domain (FETD) has been intreduced to analyze transient
electromagnetic problems [1]-[3]. By introducing
triangular or tetrahedral elements in two or three-
dimensional problem, it is easy to apply the FETD
method to highly complex shaped models. And by using
the Newmark-Beta method [4], one can obtain an
unconditionally stable FETD formulation, By introducing
the Newmark-Beta method, although one can eliminate
the limitation of time step, the larger value of the time
step causes larger numerical error.

In this paper, we propose a new unconditionally stable
solution procedure for the FETD method for the two-
dimensional TE, case wusing weighted Laguerre
polynomials as temporal basis and testing functions. By
introducing the temporal testing procedure, instead of the
marching-on in time technique, we introduce the
marching-on in order of the temporal functions.
Therefore, we can obtain the unknown coefficients for the
basis functions from the O™ order to the N!' order by
solving recursively the proposed new FETD. And also,
the proposed method produces a same banded sparse
system matrix as the conventional FETD method, which
is independent of the order of testing functions. So, we
need to assemble this sparse system matrix only once as
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like the conventional FETD method with the Newmark-
Beta method.

The paper is organized as follows. Section 2 presents
the conventional FETD formulation and the proposed
FETD formulation using weighted Laguerre polynomials.
The numerical results are presented in Section 3. Some
conclusions are given in Section 4.

II. FINITE ELEMENT IN TIME DOMAIN
A. FETD with TE, case

For a simple and lossless media, the time domain vector
wave equation is given by

2
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where ¢ is the velocity of the light in medta and 4 is the
permeability. Using a vector testing function W;, we have
the weak formulation of (1) as follows
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where € is bounded computational domain by boundary
gamma and I' denotes the absorbing boundary. In this
paper, all of domain is divided into triangular elements.
Using the Galerkin’s method, the electric field variable
throughout cmega is expanded in terms of N vector basis
functions which are same as the above vector testing
function as follows

Efr,r)= 3 E,(OW, () 3)

where W; is the linear edge-based vector basis function
[5] and E; is its corresponding temporal coefficient. To
truncate the computational domain £ numericaily, we
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should apply an absorbing boundary cendition on I. In
this paper, we use the 1* order ABC given by
ﬁxVxE+-1—r“1><r“z><a—E:0 4
¢ ot
where 1 denotes the outward unit vector normal to the
absorbing boundary T. Using some vector identities and-

inserting (4) into (2), we have the matrix equation of (2)

v {E}+ [BYE}+ (K e} =0} 5)

where upper dot denotes the derivative with respect to
time. And the element matrices are given by

ME =CL2 W, W (6a)
B = [(Ax W) (Ax W, Jar* (6b)
= }(wai)-(vaj)dQ“ (6)
Q? =—u [J-wdar (6d)
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Based on the Newmark-Beta method, (5) is approximated
as
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where E" is the discrete-time representation of E. In this
paper, we use $=1/4. By solving (7) in temporal sequence,
one can obtain the unconditionally stable solution. That is,
by introducing the Newmark-Beta method, we can
eliminate limitation of time step At in (7). However, the
larger value of the time step results in larger numerical
error. In the following part, we propose a new FETD
algorithm, which users weighted Laguerre polynomials as
temporal basis functions.

B. FETD with Weighted Lagerrre Polynomials

Consider the set of polynomials defined by
'
e d*
L(t)==——[Pe? |, forp=20,t>0 (8)
=S L ).
These are Laguerre polynomials of order p that are causal,

which means that they exist for ¢ > {. These polynomials
satisfy the following recursive relationship

L) =1, L)=1-
pLy0)=p-1-0Lps)-(-DLprl) )

where p22, 120 . The Léguerre polynomials are
orthogonal with respect to the weighting function e,
given by
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is the Kronecker delta for p—qg and zero

(10)

where &,

otherwise. Therefore, an orthonormal set of basis
functions {¢0,¢1,¢2,...} can derived from (10) through
the representation

qop(t,s)=e‘s”2Lp(s't) (an
where >0 is a time scale factor. Note that these functions
are absolutely convergent to zero as t—>eo . Hence
arbitrary functions spanned by these basis functions are
also absolutely convergent to zero as f — o= . These basis

functions are also orthogonal with respect to the scaled
time variable ¢ as

(9,00,)= pr -9, ()7 =8

where 1 =s5-¢ is the sca]ed time. Since the real time scale
is qtiite small, in order to use the above basis functions
properly, one should transform the real time scale wsing
an appropriate scale factor. These orthogonal functions
can approximate causal ¢lectromagnelic responses quite
well. By controlling the time scale factor s, the support
provided by the expansion can be increased or decreased.
Basis functions of order O to 4 are plotted in Fig. 1. As
can be seen, the functions given by (11) are causal and
convergent as [ — <o, )

(12)
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Fig.1: Weighted Laguerre polynornials with different orders

Using these temporal basis functions, the temporal
coefficients in (3) can be expanded as

E,lt)= ZE #2500

In [6], we can show that the 1¥ and 2™ derivative of E, (t)
with respect to time t are

(13}
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Inserting (13), (14), and'(15) into (5), then we have

SZ[M%z[o.stj,p +:§(p —k)E,-,ka,, (F )}+
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Multiplying both sides of (16) by ¢, (?) and integrating

(16)

over 1 = [0,00), and using the orthogonality relation {12},
then we get

(k]+0.5s[8]+0255* M fE, }= —s[B}{gEk}
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In our method, the time step is used only to calculate the
Laguerre coefficients due to the excitation in (18) at the
beginning of the computation. Therefore, one can choose
small Ar to evaluate (18) accurately, which does not
influence the computing time.,

C. Choice of The Number of Basis Functions
It is assumed that the signal that we are interested in
characterizing is practically bandlimited up to a
frequency B. In addition, we are also interested in
generating the same signal in the time domain upto the
time duration Ty Then, we represent the real time signal
P(t) by a Fourier series,

P(f)= chejkmnx
k

where @, =27/T; . Since P(¢) is real, C; =C_, where *

(19

means conjugate transpose. If P(#) is bandiimited to B
Hertz, then the value of « can be fixed by

_p<Xcp 20)
Ty

Therefore we have

BT, _
Py= 3 Ce™

k=-BTJ,
In (21}, there are 2BT+1 terms in the expansion of P(r).
Hence, the minimum number of temporal basis functions
is

@n

Ny, =287, +1 22)

In order to obtain an accurate solution, therefore, one
should solve (17) recursively at least Ny times. Therefore,
if we wan to observe the transient response at a spatial
location due to an incident field of bandwidth 2B, then we
need at least 2BT; + 1 terms of the Laguerre series to
completely characterize that temporal waveform = of
duration Ty and bandwidth 2B irrespective of its shape.

III. NUMERICAL EXAMPLE

In this section, two-dimensional parallel plate
waveguide for the TE, case is tesied to validate our
method as shown in Fig. 2. In this paper, we use the
following sinusoidally modulated Gaussian pulse as an
input electric current profile.

J,(t)=exp —[I;Tc

d

] im0, e

where

1
2f,
In this paper, we use f,= | GHz. And we choose Ty = 10
ns and B = 5 GHz. Inserting Ty and B into (22), we can
evaluate the number of the weighted Laguerre polynomial
functions, and we choose N, = 150, which is sufficient to
approximate the various responses. And the time scale
factor is 5 = 6.07x10°,

T, =——, T,=3T, (24)
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Fig. 2: A two-dimensicnal parallel plate waveguide model

The computational domain was divided into 2000
rriangular elements and 3110 edges. We put two
measurement points, p; and p;, which are the same
distant from the source. To truncate the computational
domain, we used the 1* order absorbing boundary
condition at the x-directional terminals of the domain. Fig.
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3 shows the y-components of the electric fields at the
measurement points. The agreement between the
conventional FETD method and the proposed method is
very good. In the conventional FETD methed, there are
300 times steps.
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Fig. 3: Transient electric fields of the y-component
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IV. CONCLUSIONS

A new unconditionally stable ‘solution for the time
domain finite element method has been proposed for the
two-dimensional TE, case. We utilize a marching-on in
order method to solve the proposed FETD method with
weighted Laguerre polynomials. Using the temporal basis
functions, the temporal derivatives can be handled
analytically. Also, transient fields obtained by the
proposed method are unconditionaily stable regardless of
the time step size. Moreover, the agreement between the
results obtained using the proposed method and the
conventional method is very good.

REFERENCES

J. Lee, “WETD- A finite element time-domain approach
for solving Maxwell’s equations,” I[EEE Microwave
Guided Waves Lett., vol. 4, pp. 11-13, 1994,

J. Lee, R. Lee, and A. Cangellaris, “Time-Domain finite
element method,” IEEE Tran. Antennas Propagat., vol. 435,
pp. 430442, 1997.

K. S. Komisarek, N. N. Wang, A. K. Doninek, and R.
Hann, “An Investigation of New FETD/ABC Methods of
Computation of Scattering from Three-Dimensional
Material Objects,” IEEE Trans. Antennas Propagat., vol.
47, pp. 1579-1585, 1999,

N. M Newmark, “A method of computation for structural
dynamics,” Journal of the Engineering Mechanics Division,
ASCE, vol. 85m pp. 67-94, 1959.

J. Jin, The Finite Element Method in Electromagnetics,
John Wiley & Sons, New York, 1993,

A. D. Poularikas, The Transforms and Applications
Handbook, IEEE Press, 1996.

Y. Chung, T. K. Sarkar, and B. H. Jung, “An
Unconditionally Stable Scheme for Finite Difference Time
Domain (FDTD) Method,” IEEE Tran. Microwave Theory
and Technol., 2003 (to be published)

Y. Chung, T. K. Sarkar, and B. H. Jung, “Solution of
Time- Domain Magnetic-Field Integral Equation for
Arbitrarily Closed Conducting Bodies wusing An
Unconditionally Stable Methodology,” Microwave and
Opticatl Tech. Lett., vol, 35, no. 6, pp. 453-499, 2002.

2]

3]

[4]

[3]
[6]
7

I8}



	MTT025
	Return to Contents


