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MSTRACT - In this work, we present a numerical 
method to obtain an unconditionally stable solution for the 
finite element method in time domain (FETD) for two- 
dimensional TE, case. Our method does not utilize the 
customary marching-on in time solution method often used 
to solve a hyperbolic partial differential equation. Instead 
we solve the time domain wave equation by expressing the 
transient behaviors in terms of weighted Laguerre 
polynomials. By using these causal orthonormal basis 
functions for the temporal variation, the time derivatives 
can be handled analytically. To verify our method, we apply 
it to two-dimensional parallel plate waveguide and cornparr 
the result to that of the conventional FETB using the 
Newmark-Beta method. 

I. INTRODUCTION 

In recent times, the finite element method in time 
domain (FETD) has been introduced to analyze transient 
electromagnetic problems [I]-[3]. By introducing 
triangular or tetrahedral elements in two or three- 
dimensional problem, it is easy to apply the FETD 
method to highly complex shaped models. And by using 
the Newmark-Beta method [4], one can obtain an 
unconditionally stable FETD formulation. By introducing 
the Newmark-Beta method, although one can eliminate 
the limitation of time step, the larger value of the time 
step causes larger numerical error. 

In this paper, we propose a new unconditionally stable 
solution procedure for the FETD method for the tww 
dimensional TE, case using weighted Laguerre 
polynomials as temporal basis and testing functions. By 
introducing the temporal testing procedure, instead of the 
marching-on in time technique, we introduce the 
marching-on in order of the temporal functions. 
Therefore, we can obtain the unknown cc&Cents for the 
basis functions from the Oth order to the N,” order by 
solving recursively the proposed new FETD. And also, 
the proposed method produces a same banded sparse 
system matrix as the conventional FETD method, which 
is independent of the order of testing functions. So, we 
need to assemble this sparse system matrix only once as 

like the conventional FETD method with the Newmark- 
Beta method. 

The paper is organized as follows. Section 2 presents 
the conventional FETD formulation and the proposed 
FETD formulation using weighted Laguerre polynomials. 
The numerical results are presented in Section 3. Some 
conclusions are given in Section 4. 

II. FINITE ELEMENT IN TIME DOMAIN 

A. FETD with TE, case 

For a simple and lossless media, the time domain vector 
wave equation is given by 

=T;i 

VXVXE+lazE 
Bf 

aJ - 
c2 at2 =-k$ (1) 

where c is the velocity of the light in media and ,u is the 
permeability. Using a vector testing function W,, we have 
the weak formulation of (1) as follows 

j 
R 

(VxWi).(VxE)+W+$ dR+ 
1 (2) 

t- 
where C2 is bounded computational domain by boundary 
gamma and r denotes the absorbing boundary. In this 
paper, all of domain is divided into triangular elements. 
Using the Gal&in’s methad, the electric field variable 
throughout omega is expanded in terms of N vector basis 
functions which are same as the above vector testing 
function as follows 

E(~s~)=~,Ej(Ib’,(~) (3) 

where W, is the linear edge-based vector basis function 
[5] and E, is its corresponding temporal coefl!cient. To 
truncate the computational domain Q numerically, we 

981 

0-7803-7695-l/03/$17.00 0 2003 IEEE 2003 IEEE h4TT-S Digest 



should apply a” absorbing boundary condition on r. In 
this paper, we “se the 1 order ABC given by 

lixVxE+LmxaE=O (41 ’ 
c at \ I 

where ii denotes the outward unit vector normal to the 
absorbing boundary r. Using some vector identities and 
inserting (4) into (2), we have the matrix equation of (2) 

bf xi}+ b!+}+ k@} = @I (5) 

(10) 

where 6,, is the Kronecker delta for p=p and zero 

otherwise. Therefore, a” orthonormal set of basis 
functions {%.~,,~z,,,.) can derived from (10) through 
the representation 

where upper dot denotes the derivative with respect to 
time. And the element matrices are given by 

“;=+Jwt-wjd*’ (W 
0’ 

R,: = J(irxw,)+xw&r (6b) 

if; = j~vxw,).(vxwj)&2e (&I 
n’ 

Q: =-p Jj.w,m 64 
cl’ 

Based on the Newmark-Beta method, (5) is approximated 
as 

[ 1 5 {En+l - 

(7) 

= h”” + (I- 2p)Q” f/Q-‘} 

where E” is the discrete-time representation of E. In this 
paper, we “se p=1/4. By solving (7) in temporal sequence, 
one can obtain the unconditionally stable solution. That is, 
by introducing the Newmark-Beta method, we can 
eliminate limitation of time step At in (7). However, the 
larger value of the time step results in larger numerical 
error. In the following part, we propose a new FETD 
algorithm, which users weighted Laguetx polynomials as 
temporal basis functions. 

B. FETD with Weighted Lqerrre Polynomials 

Consider the set of polynomials defined by 

These are. Laguerre polynomials of order p that are causal, 
which means that they exist for I t 0. These polynomials 
satisfy the following re&sive relationship 

L&)=1, 4(+-t 

pL,(t)=(2p-1-t)L,-,(t)-(p-l)L,-*(t) (9) 

where p >_ 2, f > 0 The Laguerre polynomials are 
orthogonal with respect to the weighting function e’, 
given by 

u),(t,s)=e-S”*LP(S.f) (11) 

wheie s>O is a time scale factor. Note that these functions 
are absolutely convergent to z& as t--f m Hence 
arbitrary functions spanned by these basis functions are 
also absolutely convergent to zero as f + m These basis 
fwctions are also orthogonal with respect to the scaled 
time variable i as 

where i = s. f is the scaled time. Since the real time scale 
is quite small, in order to “se the above basis functions 
properly, one should transform the real time scale “sing 
an appropriate scale factor. These orthogonal functions 
can approximate causal electromagnetic responses quite 
well. By controlling the time scale factor s, the support 
provided by the expansion can be increased or decreased. 
Basis fwctions of order 0 to 4 are plotted in Fig. 1. As 
can be seen, the functions given by (11) are causal and 
convergent as f + m 

Using these temporal basis functions, the temporal 
coefficients in (3) can be expanded as 

E,(t)= CE,,,q,G) (13) 
P=o 

In [6], we can show that the 1” and 2”d derivative of E,(t) 
with respect to time tare 



i,(f)=sg OSE,,, +fE,,k 
PS x=0 1 

p,(r) (14) 

it,(r)= s* 2 
( 
0.25E,,, 

l-0 
+~(P-~)E,,+@) (15) 

Inserting (13), (14), and’(l5) into (5), then we have 

k]ip,d% 6)) = {Q(t)} 

Multiplying both sides of (16) by qq(;) and integrating 

over i = [O,-), and using the orthogonality relation (12). 
then we get 

([K]+0.5s[B]+0.25s2[M]~E,}= -s[Bl(~E,) 

-~2bf&%}+{Q,j 

(17) 

where 

Q, = jQ(tb, (i)di (18) 
cl 

In cur method, the time step is used only to calculate the 
Laguerre coefficients due to the excitation in (18) at the 
beginning of the computation. Therefore, one can choose 
small At to evaluate (18) accurately, which does not 
influence the computing time. 

C. Choice of The Number of Basis Functions 
It is assumed that the signal that we are interested in 
characterizing is practically bandlimited up to a 
frequency B. In addition, we are also interested in 
generating the same signal in the time domain upto the 
time duration Tf Then, we represent the real time signal 
P(r) by a Fourier series, 

P(r)= CCkdkW (19) 
k 

where w, = 2z/Tf Since P(f) is real, C; = C_, where * 

means conjugate transpose. If P(t) is bandlimited to B 
Hertz, then the value of u can be fixed by 

-srk<B 
TJ 

cm 

Therefore we have 

(21) 
x=-BT, 

In (21), there are 2BT91 terms in the expansion of P(r). 
Hence, the minimum number of temporal basis functions 
is 

N,=2BTf+1 (2-4 

In order to obtain an accurate solution, therefore, one 
should solve (17) recursively at least NL times. Therefore, 
if we wan to observe the transient response at a spatial 
location due to an incident field of bandwidth 28, then we 
need at least UT, + 1 terms of the Laguerre series to 
completely characterize that temporal waveform of 
duration T,and bandwidth 2B irrespective of its shape. 

III. NUMERICAL EXAMPLE 

In this section, two-dimensional parallel plate 
waveguide for the TE, case is tested to validate our 
method as shown in Fig. 2. In this paper, we use the 
following sinusoidally modulated Gaussian pulse as an 
input electric current ~rotile. 

si*(Wc 6 - T, )) (23) 

Td =-+ T,=3Td (24) 
c 

In this paper, we usef= 1 GHz. And we choose T,= 10 
ns and B = 5 GHz. Inserting T, and B into (22), we can 
evaluate the number of the weighted Laguerre polynomial 
functions, and we choose NL= 150, which is sufficient to 
approximate the various responses. And the time scale 
factor is s = 6.07~10’~. 

PEC t 
I 
I 

The computational domain was divided into 2000 
triangular elements and 3110 edges. We put two 
measurement points, pl and ~2, which are the same 
distant from the source. To truncate the computational 
domain, we used the I” order absorbing boundary 
condition at the x-directional terminals of the domain. Fig. 
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3 shows the y-components of the electric fields at the 
measurement points. The agreement between the 
conventional FETD method and the proposed method is 
very good. In the conventional FETD method, there are 
300 times steps. 

(b) atm 

Fig. 3: Transient electric fields of the ysomponent 

IV. CONCLUSIONS 

A new unconditionally stable ‘solution for the time 
domain finite element method has been proposed for the 
two-dimensional TE, case. We utilize a marching-on in 
order method to solve the proposed FETD method with 
weighted Laguerre polynomials. Using the temporal basis 
functions, the temporal derivatives can be handled 
analytically. Also, transient fields obtained by the 
proposed method are unconditionally stable regardless of 
the time step size. Moreover, the agreement between the 
results obtained using the proposed method and the 
conventional method is very good. 

u1 

121 

I31 

[41 

[51 

I61 

[71 

[81 

REFERENCES 

.I. Lee, “WETD- A finite element time-domain approach 
for solving Maxwell’s equations,” IEEE Microwave 
Guided Waves Lett., vol. 4, pp. 1 l-13, 1994. 
J. Lee, R. Lee, and A. Cangellais, “Time-Domain finite 
element method,” IEEE Tr& Antennas Propagat., vol. 45, 
pp. 430442, 1997. 
K. S. Komiwek, N. N. Wang, A. K. Doninek, and R. 
Harm, “An Investigation of New FETD/ABC Methods of 
Comoutation of Scatterine from Three-Dimensional y 
Mat&al Objects,” IEEE Trans. Antennas Propagat., vol. 
47, pp. 1579-1585, 1999. 
N. M Newmark, “A method of computation for structural 
dynamics,” Journal of the Engineering Mechanics Division, 
AXE, vol. 85m pp. 67-94, 1959. 
I. Jin, The Finite Element Method in Electromagnetlcs, 
John Wiley & Sons, New York, 1993. 
A. D. Poularikas, The Transforms and Applications 
Handbook, IEEE press, ,996. 
Y. Chug, T. K. Sarkar, and B. H. Jung, “An 
Unconditionally Stable Scheme for Finite Difference Time 
Domain (FDTD) Method,” JEEE Tran. Microwave Theory 
and Technol., 2003 (to be published) 
Y. Chung, T. K. Sarkar, and B. H. Jung, “Solution of 
Time- Domain Magnetic-Reid Integral Equation for 
Arbitrarily Closed Conducting Bodies using An 
Unconditionally Stable Methodology,” Microwave and 
Optical Tech. Lett., vol. 35, no. 6, pp. 493499, 2002. 

984 


	MTT025
	Return to Contents


